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ARMY MATERIALS AND MECHANICS RESEARCH CENTER

SOME EFFECTS OF POWDER PARTICLE SIZE ON THE PHYSICAL BEHAVIOR
OF PRESS-FORGED BERYLLIUM

ABSTRACT

Powder metallurgy beryllium generally contains an oxide dispersoid, due
to particle surface scale, and thus the material actually is a system subject
to particle strengthening. The present report shows a dependence of strength
on raw powder particle size and also on thermal history.
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INTRODUCTION

Powder metallurgy beryllium differs from ingot beryllium particularly in
oxide content and, as a result, microstructures of the massive materials differ
significantly.I In general, the oxide appears as a dispersoid in network-like
configuration, distributed throughout. Principally, it has been knoyn to act
as a barrier to grain growth, characterizing powder metallurgy material by
grain size considerably finer than that of ingot material. An important result
has been grain refinement strengthening and, in addition, dispersed particles
have shown some influence on fundamental deformation behavior of the matrix
material. Thus, the dispersoid, which actually occurs inadvertently as a re-
sult of powder surface oxidation, is known to be particularly relevant to
mechanical behavior and is recognized as an important materials parameter.
However, more exact characterization is necessary for more effective utiliza-
tion and greater understanding of the particle-matrix relationship will be
helpful to further guidance. The present report gives some experimental data
that contribute in part to the subject.

PROCEDURE

The material examined in this investigation was an industrial-grade
electrolytic powder, having the impurity analysis shown in Table I. Powders

Table 1. IMPURITY ANALYSIS OF
ELECTROLYTIC BERYLLIUM POWDER

Impurity ppm Impurity ppm Impurity ppm Impurity ppm

Iron 300 Sodium <100 Silicon 25 Copper 7
Carbon 260 Zinc < 80 Titanium <25 Silver < 3
Chlorine 200 Calcium 30 Lead <15 Cadmium < 2

Nickel 140 Chromium 25 Molybdenum <15 Boron < I
Aluminum 110 Magneaium 25 Manganese It

BeO 1.91% for -43 micron powder; 2.2% for -20 micron powder

were attritioned by conventional procedure, and then were sized nominally to
fractions of -43 micron and -20 micron particles. The object in this case
was to alter oxide distribution without large change in oxide content. The
actual increase was from 1.91 to 2.2 percent (Table 1) by removing the 43 to

20 micron fraction of metal powder in this way. The powders were hot pressed
to block, and then cubes of 2-inch dimension were press forged to 1/2-inch
plate as shown in Figure 1. Forging was performed at specific temperatures
as given in Table II, and then additional heat treatment, associated with
solution and precipitation of certain metallic impurities, was applied. 2 "7

Possible changes of this kind were followed by precision electrical resis-
tivity measurement along the gage length of tensile coupons of 1-inch length
(about 2.S cm) and about 0.030-square inch cross section, (about 19 sq mm)
later tested in tension. Measurement was at room temperature only, the ob-
Ject being to note relative changes that might associate metallic impurity
with mechanical behavior. The resistivity measurement was accomplished with
a Kelvin bridge capable of 10-6 ohm resolution, but it was found that general
experimental deviation of the order of 1 percent of the mean could occur.
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.43 Microns -J 20 Microns

1400 F 1600 F 1400 F 1600 F

1800 1900 F low F 190 F

Figure I. PRESS-FORGED BERYLLIUM, SHOWING STARTING BLOCK AND
PLATE FORGED AT VARIOUS TEMPERATURES

19,066- ! 73)/AMCK-6

The possible influence of the above-described variations on uniauial ten-
sile properties, impact behavior, and hardness then was examined. Tensile
samples of the size indicated were tested with an extensometer attached, dura-

tion of the test being of the order of minutes. Impact test bars, in smooth
simple-beam configuration, were struck by a swinging pendulum and the total
energy for fracture was recorded. Samples were of 0.394-inch square cross
section (about 1 cm) and 1-S/8-inch span (about 4 ca), and the estimated rise
time to fracture was of the order of milliseconds. Finally, hardness indenta-
tions of Rockwell B nomenclature were taken on both tensile and impact test
samples.

RESULTS

Impact strength was found to be influenced by powder particle size as
indicated in Figure 2. The -20 micron material exhibited considerably greater
resistance to impact then the -43 micron material, but this behavior was con-
fined to the lower end of the processing temperature scale employed. Heating

2 _______________ __________________ ______________________________1.



Table I. PHYSICAL PROPERTIES OF
FORGED ELECTROLYTIC BERYLLIUM POWDER BLOCK

Strength PropertiestForgling impact

Temper- Additional Energy -20/ L -43 I Rockwell 8 Rae lityl

sture Thermal (ft-lb) YS. TS. Elon. YV.. TS. Elon. Hardneest (microhm am)
degF degC Treatment -20 a .431l (kal| (kail (%V. (kice (kltl 1%) -20 •, -204 -43I

1400 762 As forged 4.28 4.48
Agedtt 30.8 22.5 54.1 86.8 18 34.9 66.2 6.0 91.2 90 4.27 4.215

SolutlonlzedKt 4.2 5.4 42.1 64.2 2 32.9 64.2 5.0 86.0 87 4.30 4.46

1600 871 As forged 4.52 4.00
Aged 31.0 14.5 41.6 71.9 7 44.9 70.6 8.0 89.2 88.5 4.56 3.91
Solutionized 4.0 8.6 36.5 66.9 5 39.8 57.1 1.0 87.5 86.5 4.40 4.18

1800 912 As forged 4.42 4.00
Aged 16.8 9.5 35.1 09.4 5 362 70.8 12.0 87.0 86.0 4.46 3.90
Solutionized 7.0 7.3 33.8 62.4 4 35.2 64.5 3.0 86.2 86.5 4.61 4.06

1900 1038 As forged 4.32 4.18

Aged 13.0 12.1 35.7 70.6 10 31.4 68.2 3.7 86.6 85.5 4.46 4.07
Solutionuzed 9.5 8.9 34.8 73.0 11 28.5 60.7 4.6 860 85.0 4.48 4.25

"H@t treenment: Homogenized, 1900 F (1038 C), in vacuum, 6 hours, cooled in flowing rigon, before forging.
"Smooth test ber. Average of at Ism two oabseentiona.

tAverage of two obmrvations.
tAvere of at Ist four observations.

"*Avweg of at Ies six observations.
tt 1400 F (762 C) in vacuum, 8 hours, furnace cooled.
"l 1900 F (1038 C) in vacuum, 6 hours, cooled in flowing rgon.

at higher temperatuTres, whether for I4ooFTr, emi

forging or other thermal treatment, 32 .0 Micro 1400 F Tnamien

is seen generally to have nullified 3o
the effect. Tensile strength,
given in Figure 3 shows trends of
the same kind, but to far lesser 16-

extent on the respective ordinate 24 -43 Micron

scales employed. This behavior is
reflected also for hardness, given -

in Figure 4. It is seen that the 20-
-20 micron material was always the i
harder by a small but measurable
increment, and that the general - ,4
loss in strength associated with 14

thermal history was accompanied by
loss in hardness. 12

1L

In general, the higher values 0. .of impact strength were coincident -43 Micron ... o

with a greater degree of plastic 6 .- .-

deformation on impact. The limits 4-
.30 micro

experienced are illustrated in I... . I I I I
Figure S with samples of about 30 OF 1400 6o0 1900 2000

and 3 foot-pound impact strength C a I I I i I I

level. While the difference in

plastic deformation appears small FerunS Temperatues

in the figure, the numerical dif- Fgin 2. IMPACT RESN1ANCE OP
ference in absorbed impact energy FORGED BERYLLIUM POWDER BLOCK

19.0.4-2VAMC-,1.4
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60 -2 Micro. 1400 P Trreatment is seen to have been relatively
O 01900 F Treatment great. Thus, it seems reasonableso that further marginal increases in

ductility could be of magnified
70 .43 Micron significance to impact behavior of

20 Micron, Ti this kind. Fracture markings in
....-- all samples were indicative generally•40- 60ý .4 €"•"--''-•"ofalbrittle~epe fractureer ndaieas shown eealby a

S-20 Micron typical macrofractograph in Figure 6.
Is " . Yet, some change toward a more

-20 "ductile" appearance, as well as the
appearance of some crack arrest, is

40 -- 43 Ni~crb- observed on the compression side of
-43 Micron % ~Yield the test bar. For beryllium, it is

2- 30 - known that suppression of fracture
can result in increased slip activ-

S ,, ity, and the preceding probably is
400 100 100 2000 such an example.

M00 900 Im II00 Photomicrographs showing dis-
Forging Tem•ijratue persoid (in bright light) and grain

Figure 3. YIELD AND TENSILE STRENGTHS OF structure (in polarized light) are
FORGED BERYLLIUM POWDER BLOCK presented in Figure 7. This metal-

,94Ba&3,9/AMC-M lography shows little distinction

between the two powder materials
92 -20 Micron, 1400 F Treatment with respect to general dispersoid

9 configuration, but it is known that
S.-4o 1a rtvery small oxide particles must be

more profuse in the -20 micron ma-

-20on terial. Also, grain sizes appear
nearly equivalent, and it is signif-

-•43 Micron icant that the relatively large
differences in impact strength were

""-66-. - not accounted for by this facto?.

Precision electrical resistiv-
OF 1400 1600 1o00 20o0 ity data given in Table II show that

i , 1 1 1 I 1 1 the metallic impurity present (Table
c 00 900 1000 1100 I), did not undergo solutionizing

Forging Tempeture and aging reactions that resulted

Figure 4. HARDNESS OF FORGED in measurable changes in the elec-
BERYLLIUM POWDER BLOCK trical resistivity. This is con-

19-016-324/AMC-4 cluded from the general lack of
distinction betwen aged and solu-

tionized conditions, as well as between the processing temperatures shown.
Considerable variability between some groups is seen, but without specific
relation to mechanical behavior. This might be an indication that the dis-
tribution of impurity in the parent block material was not uniform, although
the extent involved is insensitive to the present mechanical testing.
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30 ft-lb Impact EnevWy

3 ft-lb Impact Energy

Figure S. DUCTILITY IN BERYLLIUM IMPACT TEST BARS
19466-321/AMC8T

I

I
-Neutral

-Compr.esson

Figiwe 6. TYPICAL MACROPRACTOGRAPh.
BERYLLIUM IMPACT TEST BAR

19-4M-320/AMC-6

With metallic Impurity seen to have been of negligible consequence, within
the present scope, mechanical behavior must have been influenced principally
by the oxide dispersoid. Results are as though they were influenced by a con-
dition of continuity or adhesion between particle and matrix that was subjectto disruption by the temperature experienced, the effect increasing with tem-
perature. Loss of this adhesion should not affect resistivity measurably, but
should affect strength, which is exactly in accordance with the data that have
evolved. Thus, the possibility of some form of continuity between the beryl-lis particle and the beryllium matrix. though apparently unusual, is indicated.

S
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Figure?. MICROSTRUCTURES OF BERYLLIUM IMPACT TEST BARS.
Left shows disporsold. right shows grain structure. Mag. SOOX.
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SUMMARY ArND REMARKS

The oxide dispersoid in powder metallurgy beryllium, which is known to
be an important constituent with respect to mechanical behavior, was related
further with strength, hardness, and process history. The dispersoid was
seen to have been influential beyond its effect in grain refinement strength-
ening. Further understanding should lead to more effective use of the param-
eters involved. The possibility of some form of adhesion between particle
and matrix has been indicated, though this concept of a nondeforuiable particle,
particularly of the beryllia-berylliUM system, appears unusual. Unquestion-
ably, the particle must play a fundamental role in the fracture process, in
crack origin as well as crack propagation. Particles are not in uniform
dispersion, but are concentrated in network-like zones, predominantly in the
vicinity of grain boundaries, as indicated in Figure 7. These zones are in
greater resemblance to the aggregate structure of this class of materials
than the disperse structure, which in itself is seen to be a strengthening
factor. 8 , 9 If crack origin is at grain boundaries, as has been indicated in
some bicrystal studies,1 then the role of the dispersoid is emphasized.
However, electron micrography in other work has shown very small oxide parti-
cles, in considerable numbers, within grains also. 1 1 Apart from these
observations that indicate the need for understanding of particle-matrix
relationships, additional empirical data, based on tethods generally employed
for this class of dispersion-strengthened system, may lead to significant
development of powder metallurgy beryllium.
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